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Abstract
The 5f3 → 5f26d absorption spectrum of U3+ in LiYF4 has been well calculated
using the model proposed by Reid for calculations of 4f N ↔ 4f N−15d spectra.
The relevant formulae for the matrix element calculations which were omitted
in this model are now described in detail, and the values of the direct and
exchange coefficients associated with the f–d Coulomb interactions within the
f2d configuration are derived and listed. The amount of reduction for the f–d
Coulomb interaction parameters from the free-ion values is found to be ∼67%,
which is much larger than the value of 26% for the isoelectronic Nd3+ lanthanide
ion in the same host.

1. Introduction

The f N → f N spectra of lanthanide and actinide ions in crystals have been extensively
investigated over the past 50 years. The experimental energy levels derived from the electronic
spectra may be analysed with a parametrized crystal–field Hamiltonian H [1], and the
spectroscopic coefficients existing in the H matrix elements between f N states have been
calculated and gathered into a handbook [2] which is very useful for the analysis of experimental
results. Recently it has been demonstrated that the 4f N ↔ 4f N−15d spectra of lanthanide ions
in crystals may be modelled using a straightforward extension of the standard calculations for
the 4f N configuration to include the 4f N−15d configuration. Extensive calculations have been
carried out for trivalent lanthanide ions in crystals [3–5] which gave satisfactory agreement with
experimental 4f N ↔ 4f N−15d spectra, but the relevant formulae for calculating spectroscopic
coefficients for the f N−1d configuration were not given by the authors.

Trivalent uranium in CaF2 and SrF2 has been studied for potential use as an IR laser [6, 7],
but interpretation of the optical spectra is difficult because U3+ ions occupy two different
crystal sites. Hubert et al have shown that LiYF4:U3+ is also a good candidate for an IR
laser [8], and the absorption spectra (5f3 → 5f3 and 5f3 → 5f26d) of this system have been
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measured [9, 10]. Moreover, the 5f3 → 5f3 spectra have been analysed using the crystal–field
model for the f3 configuration, where the electrostatic, spin–orbit and crystal–field parameters
were derived [10]. Therefore, it is interesting to analyse the 5f3 → 5f25d absorption spectra
of U3+ in LiYF4 using the extended model mentioned above.

In this paper, we demonstrate that the energy levels of U3+ in LiYF4, and the intensities
of the 5f3 → 5f26d transitions of U3+ in this host, can be modelled and calculated by Reid’s
extended program in the same manner as for the 4fN and 4f N−15d configurations. The literature
values for atomic and crystal–field parameters for the 5f3 configuration have been used and the
crystal–field parameters for the 6d electron were approximated by those for the 5d electron in
the same host [3]. However, the five Coulomb (direct and exchange) f–d interaction parameters
for the 5f26d configuration needed to be adjusted even more seriously from the values obtained
with the standard atomic calculations [11]. At the same time, the relevant formulae for f N−1d
energy-level calculations and for f → d electric dipole transition intensities are described in
detail in this study, using the irreducible tensor operator formalism of [11]. The Coulomb f–d
spectroscopic coefficients for the f2d system are listed in tables for convenient reference. The
calculated energies and intensities of zero-phonon lines are successfully used to model the
experimental 5f → 6d absorption spectrum.

2. Theory

2.1. Matrix elements of Hamiltonians

The Hamiltonian for the f N−1d configuration of an ion in a crystal environment can be written
as

H = H0 + HC + HSO + HCF + · · · , (1)

where

HC =
∑
i< j

1

ri j
=

∑
i< j

∑
k

r k
<

rk+1
>

(c(k)
i · c(k)

j ), (2)

HSO =
∑

i

ξi(ri )si · li (3)

and

HCF =
∑

i

∑
k,q

Bk
q c(k)

q (i) (4)

are the Coulomb interaction between the N electrons, the spin–orbit interaction and the crystal–
field interaction respectively. The summation involving i or j is over all the electrons (i.e. the
(N −1) f electrons and one d electron). The H0 in equation (1) is the sum of the kinetic energies
and the potential energies of the N electrons in the field of the ion core, and the suspension
points indicate other small interactions [1] which have to be considered in the energy level
calculations in order to get a good agreement between experiment and calculation. The r<

and r> are respectively the lesser and greater of the distances of the electrons i and j from
the nucleus. The meanings of the other symbols in the above expressions are fully described
in [1]. In the following subsections, the matrix elements of the Hamiltonians HC, HSO and HCF

between the completely antisymmetric basis states |(f N−1α1S1 L1, sdld)SL J M〉 of the f N−1d
configuration are evaluated, and the explicit expressions for the angular parts of these matrix
elements, i.e. the spectroscopic coefficients, are given.
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2.1.1. Matrix elements of the Coulomb interaction HC. With the above basis wavefunctions
|( f N−1α1S1 L1, sdld)SL J M〉, the matrix element of the Hamiltonian HC is diagonal in the
quantum numbers S, L, J and M and is independent of J and M . Accordingly, the matrix
element can be written as

〈(f N−1α1 S1 L1, sdld)SL J M|HC|(f N−1α′
1S′

1 L ′
1, sdld)SL J M〉

=
∑

k1

fk1(ff)Fk1(ff) +
∑

k2

fk2(fd)Fk2(fd) +
∑

j

g j(fd)G j (fd), (5)

where fk1(ff) (k1 = 0, 2, 4, 6) are the coefficients which represent the angular parts of the matrix
elements of the f–f Coulomb interaction within the f N−1 core, and fk2(fd) (k2 = 0, 2, 4) and
g j(fd) ( j = 1, 3, 5) represent the angular parts of matrix elements of the f–d Coulomb direct
and exchange interactions respectively. The Fk1(ff), Fk2(fd) and G j(fd) fitting parameters
are the corresponding radial integrals, and may be written respectively as

Fk1 (ff) = e2
∫ ∞

0

∫ ∞

0

rk1
<

rk1+1
>

|Rf(r1)Rf(r2)|2r2
1 r2

2 dr1 dr2, (6)

Fk2 (fd) = e2
∫ ∞

0

∫ ∞

0

rk
<

rk+1
>

|Rf(r1)Rd(r2)|2r2
1 r2

2 dr1 dr2, (7)

and

G j (fd) = e2
∫ ∞

0

∫ ∞

0

r j
<

r j+1
>

R∗
f (r1)R∗

d(r2)Rf(r2)Rd(r1)r
2
1 r2

2 dr1 dr2. (8)

The fk1(ff) coefficients may be expressed as

fk1(ff) = 1
2 (N − 1)(N − 2)

× NA〈(f N−1α1S1 L1, sdld)SL J M|c(k1)

f · c(k1)

f |(f N−1α′
1S′

1 L ′
1, sdld)SL J M〉NA

= δS1 L1,S′
1 L ′

1

1
2 (N − 1)(N − 2)

× 〈f N−1α1 S1 L1 MS1 ML1 |c(k1)

f · c(k1)

f |f N−1α′
1 S1 L1 MS1 ML1 〉, (9)

which are the same as the Coulomb spectroscopic coefficients for the f N−1 configuration, and
are independent of S, L, J , M and MS1 , ML1 . As is well known, their values can be obtained
easily from [2], using the transformation relationships [2] between the Slater radial integrals
Fk and Racah parameters Ek . The subscripts ‘NA’ in the above expression (and following
sections) denote that the wavefunction is non-antisymmetric with respect to the exchange of
the d electron with any one of the f N−1 electrons.

The direct coefficient fk(fd) for the f–d interaction can be expressed as [11]

fk2(fd) = (N − 1)NA〈(f N−1α1 S1 L1, sdld)SL J M|c(k2)

f · c(k2)

d |(f N−1α′
1S′

1 L ′
1, sdld)SL J M〉NA

= 〈lf‖c(k2)‖lf〉〈ld‖c(k2)‖ld〉I (k2)

fd , (10)

and the exchange coefficient g j(fd) is

g j(fd) = − 1
2 〈lf‖c( j)‖ld〉2

[ 4∑
r=0

(−1)r(2r + 1)

{
lf lf r
ld ld j

}
[I (r)

fd + 4I (1r)

fd ]

]
. (11)

In the above two expressions

I (k)

fd = δS′
1,S1(−1)L ′

1+L+ld

{
L1 ld L
ld L ′

1 k

}
〈f N−1α1S1 L1‖U (k)‖f N−1α′

1 S1 L ′
1〉 (12)
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and

I (1r)

fd = (−1)sd+ld +S′
1+L ′

1+S+L

{
S1 sd S
sd S′

1 1

} {
L1 ld L
ld L ′

1 r

} (
3
2

) 1
2

× 〈f N−1α1 S1 L1‖V (1r)‖f N−1α′
1 S′

1 L ′
1〉 (13)

where sd = 1/2, and ld = 2. The numerical values of 6- j symbols in the above expressions
(and 3- j , 6- j symbols in the following sections) can be calculated from the relations given
in [12]. The values of the reduced matrix elements of the unit tensor operator U (k) and double
tensor operator V (11) have been tabulated by Nielson and Koster [2], and those for V (1r) with
r > 1 can be calculated by the formula (11.68) of [11] in terms of the coefficients of fractional
parentage (cfps) in [2]. With the above formulae, the direct and exchange coefficients fk2(fd)

and g j(fd) for the case N = 3 were calculated, and the results are displayed in tables 1 and 2
for convenient reference, in which the spectral term |(f2α1 S1 L1, sdld)SL〉 is abbreviated to
|(L1)L〉 and |(S1 L1)SL〉 respectively for conciseness. Since the matrix element,

〈(f N−1α1 S1 L1, sdld)SL J M|HC|(f N−1α′
1S′

1 L ′
1, sdld)SL J M〉

= 〈(f N−1α′
1 S′

1 L ′
1, sdld)SL J M|HC|(f N−1α1S1 L1, sdld)SL J M〉 (14)

is independent of quantum numbers J and M , only the values of the direct and exchange
coefficients on and above the diagonal are listed in tables 1 and 2. Then, there are 45
and 92 different non-zero matrix elements for the Coulomb direct and exchange interactions
respectively for the f2d configuration with 42 spectral terms.

2.1.2. Matrix elements of the spin–orbit interaction HSO. With the basis states
|(f N−1α1 S1 L1, sdld)SL J M〉, the matrix element of HSO is diagonal in quantum numbers J
and M , and independent of M , and can be expressed as

〈(f N−1α1 S1 L1, sdld)SL J M|HSO|(f N−1α′
1 S′

1 L ′
1, sdld)S′L ′ J M〉 = ζf ASO(f) + ζd ASO(d), (15)

where ASO(f) and ASO(d) are the angular parts of the matrix elements of the spin–orbit
interactions for f electrons and d electron respectively and ζf and ζd are corresponding spin–
orbit radial integral parameters.

The explicit expressions for the ASO(f) may be obtained as follows:

ASO(f) = (N − 1) · NA〈(f N−1α1S1 L1, sdld)SL J M|sf · lf |(f N−1α′
1S′

1 L ′
1, sdld)S′L ′ J M〉NA

= (−1)S′+L+J (N − 1)

{
S L J
L ′ S′ 1

}

× NA〈(f N−1α1S1, sd)S‖sf‖(f N−1α′
1 S′

1, sd)S′〉NA

× NA〈(f N−1α1 L1, ld)L‖lf‖(f N−1α′
1 L ′

1, ld)L ′〉NA

= (−1)S′+L+J 〈lf‖lf‖lf〉
{

S L J
L ′ S′ 1

}

× NA〈(f N−1α1S1 L1, sdld)SL‖V (11)

f ‖(f N−1α′
1 S′

1 L ′
1, sdld)S′ L ′〉NA, (16)

and, in a similar way, the expression of ASO(d) may be written as

ASO(d) = NA〈(f N−1α1 S1 L1, sdld)SL J M|sd · ld|(f N−1α′
1 S′

1 L ′
1, sdld)S′L ′ J ′M ′〉NA

= (−1)S′+L+J 〈ld‖ld‖〉 ld〉
{

S L J
L ′ S′ 1

}

× NA〈(f N−1α1S1 L1, sdld)SL‖v(11)

d ‖(f N−1α′
1 S′

1 L ′
1, sdld)S′L ′〉NA, (17)

where 〈lf‖lf‖lf〉 = √
84 and 〈ld‖ld‖ld〉 = √

30.
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Table 1. The direct coefficients calculated between 〈(f2α1S1L1, sdld)SL| and
|(f2α′

1S′
1 L ′

1, sdld)SL〉 for the f2d configuration. The fk2 (fd)(k2 = 0, 2, 4) are the direct coefficients
defined by equation (10) in the text, and the f ′

k2
(fd) are the coefficients of parameters Fk2 (fd),

whose relationships with Fk2 (fd) are: F0(fd) = F0(fd), F2(fd) = F2(fd)/105 and F4(fd) =
F4(fd)/693.

(L1) L (L ′
1) L ′ f0(fd) f2(fd) f4(fd) f ′

0(fd) f ′
2(fd) f ′

4(fd)

(P) P (P) P 2 −0.2 0 2 −21 0

(P) P (F) P 0 0.066 −0.165 0 6.9282 −114.3154

(P) D (P) D 2 0.2 0 2 21 0

(P) D (F) D 0 0.1616 0.0673 0 16.9706 46.6691

(P) F (P) F 2 −0.0571 0 2 −6 0

(P) F (F) F 0 0.2116 −0.0147 0 22.2197 −10.184

(P) F (H) F 0 0 0.1172 0 0 81.2404

(F) P (F) P 2 −0.0762 −0.0317 2 −8 −22

(F) D (F) D 2 −0.019 0.0476 2 −2 33

(F) F (F) F 2 0.0349 −0.0317 2 3.6667 −22

(F) F (H) F 0 0.0796 0.1176 0 8.3571 81.4818

(F) G (F) G 2 0.0476 0.0106 2 5 7.3333

(F) G (H) G 0 0.1263 −0.1037 0 13.2665 −71.8602

(F) H (F) H 2 −0.0317 −0.0014 2 −3.3333 −1

(F) H (H) H 0 0.1295 0.0368 0 13.5974 25.4951

(H) F (H) F 2 0.1651 −0.0375 2 17.3333 −26

(H) G (H) G 2 0 0.0875 2 0 60.6667

(H) H (H) H 2 −0.1111 −0.0808 2 −11.6667 −56

(H) I (H) I 2 −0.1048 0.0346 2 −11 24

(H) K (H) K 2 0.0952 −0.0058 2 10 −4

(S) D (S) D 2 0 0 2 0 0

(S) D (D) D 0 0.2469 0 0 25.923 0

(S) D (G) D 0 0 0.1519 0 0 105.2996

(D) S (D) S 2 −0.2095 0.1905 2 −22 132.0001

(D) P (D) P 2 −0.1048 −0.127 2 −11 −88

(D) D (D) D 2 0.0449 0.0544 2 4.7143 37.7143

(D) D (G) D 0 0.0884 0.0251 0 9.2846 17.4086

(D) F (D) F 2 0.1197 −0.0136 2 12.5714 −9.4286

(D) F (G) F 0 0.1563 −0.0178 0 16.413 −12.3098

(D) G (D) G 2 −0.0599 0.0015 2 −6.2857 1.0476

(D) G (G) G 0 0.1728 0.0054 0 18.1453 3.7115

(D) G (I) G 0 0 0.0649 0 0 44.9691

(G) D (G) D 2 0.0408 −0.0616 2 4.2857 −42.7143

(G) F (G) F 2 0.0041 0.1233 2 0.4286 85.4286

(G) G (G) G 2 −0.0241 −0.1009 2 −2.5325 −69.8961

(G) G (I) G 0 0.0539 0.1379 0 5.6646 95.5908

(G) H (G) H 2 −0.026 0.0392 2 −2.7273 27.1818

(G) H (I) H 0 0.0809 −0.1379 0 8.497 −95.5908

(G) I (G) I 2 0.0208 −0.006 2 2.1818 −4.1818

(G) I (I) I 0 0.0794 0.0541 0 8.332 37.4938

(I) G (I) G 2 0.303 0.0416 2 31.8182 28.8485

(I) H (I) H 2 −0.0216 −0.107 2 −2.2727 −74.1818

(I) I (I) I 2 −0.2208 0.107 2 −23.1818 74.1818

(I) K (I) K 2 −0.1905 −0.0491 2 −20 −34

(I) L (I) L 2 0.1905 0.0087 2 20 6
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Table 2. The exchange coefficients calculated between 〈(f2α1S1 L1, sdld)SL| and
|(f2α′

1S′
1 L ′

1, sdld)SL〉 for the f2d configuration. The g j (fd)( j = 1, 3, 5) are the exchange
coefficients defined by equation (11) in the text, and the g′

j (fd) are the coefficients of parameters

G j (fd), whose relationships with G j (fd) are: G1(fd) = G1(fd)/35, G3(fd) = G3(fd)/315 and
G5(fd) = 5G5(fd)/7693.

(S1 L1) SL (S′
1L ′

1) S′L ′ g1(fd) g3(fd) g5(fd) g′
1(fd) g′

3(fd) g′
5(fd)

(3P) 2P (3P) 2P −0.0857 0.0571 0.0325 −3 18 49.5
(3P) 2P (3F) 2P −0.1485 −0.0385 0.0125 −5.1962 −12.1243 19.0526
(3P) 2P (1D) 2P 0.2571 −0.1238 0.0541 9 −39 82.5
(3P) 4P (3P) 4P 0.1714 −0.1143 −0.0649 6 −36 −98.9999
(3P) 4P (3F) 4P 0.2969 0.077 −0.025 10.3923 24.2487 −38.1051
(3P) 2D (3P) 2D 0.2 0.0095 0.0758 7 3 115.5
(3P) 2D (3F) 2D 0.0606 0.0269 0.0306 2.1213 8.4853 46.669
(3P) 2D (1S) 2D −0.2424 −0.0404 0.0918 −8.4853 −12.7279 140.0072
(3P) 2D (1D) 2D −0.2806 0 0.1063 −9.8198 0 162.0267
(3P) 2D (1G) 2D 0.076 0.1182 0.014 2.6592 37.229 21.2737
(3P) 4D (3P) 4D −0.4 −0.019 −0.1515 −14 −6 −231
(3P) 4D (3F) 4D −0.1212 −0.0539 −0.0612 −4.2426 −16.9706 −93.3381
(3P) 2F (3P) 2F 0.0776 0.0503 0.0247 2.7143 15.8571 37.7142
(3P) 2F (3F) 2F 0.1852 −0.05 0.0234 6.4807 −15.7389 35.644
(3P) 2F (3H) 2F 0.0829 0.0368 0.0019 2.9014 11.6058 2.9014
(3P) 2F (1D) 2F −0.2549 −0.03 0.0568 −8.9231 −9.448 86.6069
(3P) 2F (1G) 2F −0.2872 0.0319 0.0165 −10.0509 10.0509 25.1272
(3P) 4F (3P) 4F −0.1551 −0.1007 −0.0495 −5.4286 −31.7143 −75.4285
(3P) 4F (3F) 4F −0.3703 0.0999 −0.0468 −12.9615 31.4779 −71.2881
(3P) 4F (3H) 4F −0.1658 −0.0737 −0.0038 −5.8029 −23.2115 −5.8029
(3F) 2P (3F) 2P 0.0286 −0.019 0.0649 1 −6 99
(3F) 2P (1D) 2P −0.0495 −0.1595 0.0625 −1.7321 −50.2295 95.2628
(3F) 4P (3F) 4P −0.0571 0.0381 −0.1299 −2 12 −198
(3F) 2D (3F) 2D −0.0429 0.0603 0.0794 −1.5 19 121
(3F) 2D (1S) 2D −0.2571 0.0762 0.0216 −9 24 33
(3F) 2D (1D) 2D 0.1984 0 0.1002 6.9437 0 152.7603
(3F) 2D (1G) 2D −0.0537 −0.0836 0.0937 −1.8804 −26.3249 142.9065
(3F) 4D (3F) 4D 0.0857 −0.1206 −0.1587 3 −38 −242
(3F) 2F (3F) 2F −0.0429 0.0418 0.0709 −1.5 13.1667 108.1667
(3F) 2F (3H) 2F 0 0.0663 0.024 0 20.8928 36.5624
(3F) 2F (1D) 2F −0.2592 −0.0552 0.0886 −9.0711 −17.3864 135.1223
(3F) 2F (1G) 2F 0.1551 −0.0172 0.1032 5.4281 −5.4281 157.4149
(3F) 4F (3F) 4F 0.0857 −0.0836 −0.1419 3 −26.3333 −216.3333
(3F) 4F (3H) 4F 0 −0.1327 −0.048 0 −41.7855 −73.1247
(3F) 2G (3F) 2G 0.2238 0.0122 0.0373 7.8333 3.8333 56.8333
(3F) 2G (3H) 2G −0.0632 −0.0281 0.0214 −2.2111 −8.8443 32.6135
(3F) 2G (1D) 2G −0.3117 0 0.0354 −10.9109 0 54.0089
(3F) 2G (1G) 2G −0.1458 −0.0798 0.0661 −5.1025 −25.1346 100.7275
(3F) 2G (1I) 2G 0.0841 0.0841 0.0087 2.9439 26.4953 13.2476
(3F) 4G (3F) 4G −0.4476 −0.0243 −0.0746 −15.6667 −7.6667 −113.6667
(3F) 4G (3H) 4G 0.1263 0.0562 −0.0428 4.4222 17.6887 −65.227
(3F) 2H (3F) 2H 0.1286 0.0624 0.0083 4.5 19.6667 12.6667
(3F) 2H (3H) 2H 0.2185 −0.0378 0.0089 7.6485 −11.8977 13.5974
(3F) 2H (1G) 2H −0.3954 0.0315 0.0209 −13.8392 9.9224 31.8562
(3F) 2H (1I) 2H −0.1743 −0.0129 0.0053 −6.1014 −4.0676 8.1352
(3F) 4H (3F) 4H −0.2571 −0.1249 −0.0166 −9 −39.3333 −25.3333
(3F) 4H (3H) 4H −0.4371 0.0755 −0.0178 −15.2971 23.7954 −27.1948
(3H) 2F (3H) 2F −0.0061 −0.0239 0.1299 −0.2143 −7.5238 198.1191
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Table 2. (Continued.)

(S1 L1) SL (S′
1L ′

1) S′L ′ g1(fd) g3(fd) g5(fd) g′
1(fd) g′

3(fd) g′
5( f d)

(3H) 2F (1D) 2F 0.1015 0.1203 0.0132 3.5535 37.9043 20.1367
(3H) 2F (1G) 2F −0.0283 0.0031 0.109 −0.9897 0.9897 166.1531
(3H) 4F (3H) 4F 0.0122 0.0478 −0.2599 0.4286 15.0476 −396.2381
(3H) 2G (3H) 2G 0.0333 0.0466 0.088 1.1667 14.6667 134.1667
(3H) 2G (1D) 2G −0.2585 0 0.0107 −9.0468 0 16.2843
(3H) 2G (1G) 2G 0.0586 −0.0861 0.0895 2.0513 −27.1226 136.4678
(3H) 2G (1I) 2G 0.0127 0.0761 0.1022 0.4438 23.9659 155.7783
(3H) 4G (3H) 4G −0.0667 −0.0931 −0.176 −2.3333 −29.3333 −268.3333
(3H) 2H (3H) 2H −0.0857 0.0201 0.0432 −3 6.3333 65.8334
(3H) 2H (1G) 2H 0.038 −0.0676 0.0437 1.3314 −21.303 66.5719
(3H) 2H (1I) 2H −0.0684 −0.157 0.0625 −2.3932 −49.4589 95.328
(3H) 4H (3H) 4H 0.1714 −0.0402 −0.0864 6 −12.6667 −131.6667
(3H) 2I (3H) 2I 0.0857 0.0698 0.0134 3 22 20.5
(3H) 2I (1G) 2I −0.4786 0.0532 0.011 −16.7522 16.7522 16.7522
(3H) 2I (1I) 2I 0.2238 −0.0249 0.0231 7.8335 −7.8335 35.2507
(3H) 4I (3H) 4I −0.1714 −0.1397 −0.0269 −6 −44 −41
(3H) 2K (3H) 2K 0.2857 0.0476 0.002 10 15 2.9999
(3H) 2K (1I) 2K −0.4949 0.055 0.0045 −17.3205 17.3205 6.9282
(3H) 4K (3H) 4K −0.5714 −0.0952 −0.0039 −20 −30 −6
(1S) 2D (1S) 2D −0.0857 −0.0381 −0.0433 −3 −12 −66
(1S) 2D (1D) 2D −0.1587 0.0323 −0.0334 −5.5549 10.184 −50.9201
(1S) 2D (1G) 2D −0.1074 −0.0478 −0.0025 −3.7607 −15.0428 −3.7607
(1D) 2S (1D) 2S −0.1714 −0.0603 −0.0361 −6 −19 −55
(1D) 2P (1D) 2P 0.1429 0 −0.0541 5 0 −82.5
(1D) 2D (1D) 2D −0.0122 −0.0712 −0.0747 −0.4286 −22.4286 −113.9286
(1D) 2D (1G) 2D 0.0497 −0.0332 −0.0228 1.7409 −10.4452 −34.8173
(1D) 2F (1D) 2F −0.2143 0 −0.0541 −7.5 0 −82.5
(1D) 2F (1G) 2F 0 0 −0.0283 0 0 −43.0842
(1D) 2G (1D) 2G −0.0932 −0.0596 −0.0146 −3.2619 −18.7619 −22.2619
(1D) 2G (1G) 2G −0.2121 0.0497 −0.0153 −7.4231 15.6709 −23.3002
(1D) 2G (1I) 2G −0.0459 −0.0204 −0.0011 −1.606 −6.4242 −1.606
(1G) 2D (1G) 2D −0.002 0.0331 −0.0955 −0.0714 10.4286 −145.5714
(1G) 2F (1G) 2F −0.0143 −0.0778 −0.0889 −0.5 −24.5 −135.5
(1G) 2G (1G) 2G 0.0941 −0.0173 −0.0588 3.2922 −5.4351 −89.7078
(1G) 2G (1I) 2G −0.026 −0.0678 −0.0185 −0.9104 −21.3436 −28.1715
(1G) 2H (1G) 2H −0.1935 −0.0384 −0.0239 −6.7727 −12.0909 −36.3636
(1G) 2H (1I) 2H 0.091 0.0405 −0.0125 3.1864 12.7454 −19.1182
(1G) 2I (1G) 2I −0.1896 −0.0583 −0.0044 −6.6364 −18.3636 −6.6364
(1G) 2I (1I) 2I −0.1785 0.0198 −0.0041 −6.249 6.249 −6.249
(1I) 2G (1I) 2G −0.0009 −0.0105 −0.1699 −0.0303 −3.303 −259.0303
(1I) 2H (1I) 2H 0.0078 0.0511 −0.0768 0.2727 16.0909 −117.1364
(1I) 2I (1I) 2I −0.039 −0.075 −0.0261 −1.3636 −23.6364 −39.8637
(1I) 2K (1I) 2K 0.1429 −0.0952 −0.0059 5 −30 −9
(1I) 2L (1I) 2L −0.4286 −0.0317 −0.0007 −15 −10 −1

The reduced matrix elements of the double tensor operator in the above two equations can
be further expanded as

NA〈(f N−1α1S1 L1, sdld)SL‖V
(11)

f ‖(f N−1α′
1S′

1 L ′
1, sdld)S′ L ′〉NA

= (−1)S1+sd+S′+L1+ld +L ′
[(2S + 1)(2S′ + 1)(2L + 1)(2L ′ + 1)]1/2
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×
{

S1 sd S
S′ 1 S′

1

}{
L1 ld L
L ′ 1 L ′

1

}
〈f N−1α1S1 L1‖V

(11)

f ‖f N−1α′
1S′

1 L ′
1〉 (18)

and

NA〈(f N−1 S1 L1, sdld)SL‖v
(11)

d ‖(f N−1 S′
1 L ′

1, sdld)S′L ′〉NA

= δα1 S1 L1,α
′
1 S′

1 L ′
1
(−1)S1+sd+S+L1+ld +L [(2S + 1)(2S′ + 1)(2L + 1)(2L ′ + 1)]1/2

×
{

S1 sd S
1 S′ sd

}{
L1 ld L
1 L ′ ld

}
〈sdld‖v

(11)

d ‖sdld〉, (19)

where the values for the reduced matrix elements 〈f N−1α1 S1 L1‖V
(11)

f ‖f N−1α′
1 S′

1 L ′〉 can be
found in [2], and 〈sdld‖v

(11)

d ‖sdld〉 = ( 3
2 )1/2. Note that both the reduced matrix elements (18)

and (19) of V
(11)

f and v
(11)

d are (S, L) dependent. In addition,

〈(f N−1α1 S1 L1, sdld)SL J M|HSO|(f N−1α′
1 S′

1 L ′
1, sdld)S′L ′ J M〉

= 〈(f N−1α′
1 S′

1 L ′
1, sdld)S′ L ′ J M|HSO|(f N−1α1S1 L1, sdld)SL J M〉. (20)

2.1.3. Matrix elements of the crystal–field interaction HCF . The matrix elements of the
Hamiltonian HCF are given by

〈(f N−1α1 S1 L1, sdld)SL J M|HCF|(f N−1α′
1 S′

1 L ′
1, sdld)S′ L ′ J ′M ′〉

=
∑
k1q1

Bk1
q1

(f) · dk1
q1

(f) +
∑
k2q2

Bk1
q2

(d) · dk2
q2

(d), (21)

where dk1
q1

(f) and dk2
q2

(d) are the angular parts of the matrix elements of the crystal–field
interactions for f electrons and d electrons respectively. The crystal–field parameters Bk1

q1
(f)

and Bk2
q2

(d) and are generally taken as fitting parameters. The two matrix elements of the
spherical tensor operators may be further expanded as follows:

dk1
q1

(f) = (N − 1) · NA〈(f N−1α1 S1 L1, sdld)SL J M|c(k1)
q1

(f)|(f N−1α′
1S′

1 L ′
1, sdld)S′L ′ J ′M ′〉NA

= NA〈(f N−1α1 S1 L1, sdld)SL J M|C (k1)
q1

(f)|(f N−1α′
1 S′

1 L ′
1, sdld)S′ L ′ J ′M ′〉NA

= (−1)J−M

(
J k1 J ′

−M q1 M ′

)

× NA〈(f N−1α1S1 L1, sdld)SL J‖C (k1)(f)‖(f N−1α′
1 S′

1 L ′
1, sdld)S′L ′ J ′〉NA

= δS,S′(−1)J−M+S+L ′+J +k1

× [(2J + 1)(2J ′ + 1)]1/2

(
J k1 J ′

−M q1 M ′

) {
S L J
k1 J ′ L ′

}

× NA〈(f N−1α1S1 L1, sdld)SL‖C (k1)(f)‖(f N−1α′
1S′

1 L ′
1, sdld)SL ′〉NA (22)

and, in a similar way,

dk2
q2

(d) = NA〈(f N−1α1S1 L1, sdld)SL J M|c(k2)
q2

(d)|(f N−1α′
1 S′

1 L ′
1, sdld)S′L ′ J ′M ′〉NA

= δS,S′(−1)J−M+S+L ′+J +k2

× [(2J + 1)(2J ′ + 1)]1/2

(
J k2 J ′

−M q2 M ′

) {
S L J
k2 J ′ L ′

}

× NA〈(f N−1α1S1 L1, sdld)SL‖c(k2)(d)‖(f N−1α′
1 S′

1 L ′
1, sdld)SL ′〉NA. (23)

The two reduced matrix elements in the above two expressions can be expressed as:

NA〈(f N−1α1S1 L1, sdld)SL‖C (k1)(f)‖(f N−1α′
1S′

1 L ′
1, sdld)SL ′〉NA
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= (−1)L1+ld+L ′+k1 [(2L + 1)(2L ′ + 1)]1/2

{
L1 ld L
L ′ k1 L ′

1

}
〈lf‖ck1(f)‖lf〉

× 〈f N−1α1 S1 L1‖U (k1)(f)‖f N−1α′
1 S′

1 L ′
1〉 (24)

and

NA〈(f N−1α1S1 L1, sdld)SL‖c(k2)(d)‖(f N−1α′
1 S′

1 L ′
1, sdld)SL ′〉NA

= δα1 S1 L1,α
′
1 S′

1 L ′
1
(−1)L1+ld +L+k2 [(2L + 1)(2L ′ + 1)]1/2

×
{

L1 ld L
k2 L ′ ld

}
〈ld‖c(k2)(d)‖ld〉 (25)

where the values of the reduced matrix elements of the unit tensor operator U (k1)(f) are

listed in [2]; 〈lf‖c(k1)(f)‖lf〉 = −7 ·
(

3 k1 3

0 0 0

)
and 〈ld‖c(k2)(d)‖ld〉 = 5 ·

(
2 k2 2

0 0 0

)
. By

combining the expressions (22)–(25), the angular parts of the matrix elements of the crystal–
field Hamiltonian HC, can be calculated straightforwardly.

2.2. Matrix elements of f N → f N−1d transitions

The transition matrix element of the electric dipole operator D(1)
q between the initial f N state

|fN�′γ ′〉 and the final f N−1d state |f N−1d�γ 〉 can be expressed as

〈fN�′γ ′|D(1)
q |f N−1d�γ 〉

=
∑

η′ S′L ′ J ′ M ′

∑
S1 L1 SL J M

a�′γ ′(η′S′L ′ J ′M ′)a�γ (α1 S1 L1 SL J M)

× 〈f N η′S′ L ′ J ′M ′|D(1)
q |(f N−1α1S1 L1, sdld)SL J M〉. (26)

The transition matrix element between the basis states of f N and f N−1d configurations can be
written as

〈f N η′S′ L ′ J ′M ′|D(1)
q |(f N−1α1S1 L1, sdld)SL J M〉

= 〈f N η′S′ L ′ J ′M ′|
N∑

i=1

ri c
(1)
q (i)|(f N−1α1 S1 L1, sdld)SL J M〉

= N√
N

〈f N η′S′ L ′ J ′M ′|rN c(1)
q (N)|(f N−1 S1 L1, sdld)SL J M〉NA, (27)

where the electric dipole operator D(1)
q is expressed in terms of the spherical tensor operator

c(1)
q (N) acting on the state of the N th electron, which is the d electron of the non-antisymmetric

f N−1d states. The factor 1/
√

N in the last step relates to the probability 1/N that the N th
electron occupies the d state while the other (N − 1) electrons occupy the f N−1 states. The
matrix element can be further expanded as follows:

〈f N η′S′ L ′ J ′M ′|rN c(1)
q (N)|(f N−1α1 S1 L1, sdld)SL J M〉NA

= (−1)J ′−M ′
(

J ′ 1 J
−M ′ q M

)

× 〈f N η′S′ L ′ J ′‖rN c(1)(N)‖(f N−1α1S1 L1, sdld)SL J 〉NA

= δS′S(−1)2J ′−M ′+S+L+1[(2J ′ + 1)(2J + 1)]1/2

(
J ′ 1 J

−M ′ q M

) {
S L ′ J ′
1 J L

}

× 〈f N η′SL ′‖rN c(1)(N)‖(f N−1α1 S1 L1, sdld)SL〉NA

= δS′S(−1)2J ′−M ′+S+L+J +1[(2J ′ + 1)(2J + 1)]1/2
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×
(

J ′ 1 J
−M ′ q M

) {
S L ′ J ′
1 J L

}∑
ᾱSL

〈f Nη′SL ′{| f N−1ᾱ S̄ L̄〉

× NA〈(f N−1ᾱ S̄ L̄, sf lf)η
′SL ′‖rN c(1)(N)‖(f N−1α1 S1 L1, sdld)SL〉NA

= δS′S(−1)2J ′−M ′+S+L+J +1[(2J ′ + 1)(2J + 1)]1/2

×
(

J ′ 1 J
−M ′ q M

) {
S L ′ J ′
1 J L

}

× 〈f N η′SL ′{|f N−1α1S1 L1〉〈f |r |d〉(−1)L1+ld +L ′+1

× [(2L ′ + 1)(2L + 1)]1/2

{
L1 lf L ′
1 L ld

}
〈lf‖c(1)‖ld〉

= δS′S(−1)2J ′−M ′+S+L+J +L1+ld +L ′
[(2J ′ + 1)(2J + 1)(2L ′ + 1)(2L + 1)]1/2

×
(

J ′ 1 J
−M ′ q M

) {
S L ′ J ′
1 J L

}

×
{

L1 lf L ′
1 L ld

}
〈f N η′SL ′{|f N−1α1S1 L1〉〈f |r |d〉〈lf‖c(1)‖ld〉, (28)

where lf = 3, and the subscript ‘NA′’ in the third step means that the wavefunction is non-
antisymmetric with respect to exchange between any one of the (N −1) electrons of f N−1 core
and the N th f electron denoted by sflf , and 〈lf‖c(1)‖ld〉 = √

3. The values of cfps are available
in [2]. By combining equations (26)–(28), the electric dipole matrix element between f N states
and f N−1d states can be evaluated easily, while the radial integral 〈f |r |d〉 can be kept as a fitting
parameter, or omitted if only the relative transition intensities are of interest.

3. Results and discussion

3.1. Calculation of energy levels

Our calculation of the energy levels of the 5f26d configuration of U3+ in LiYF4 has used the
extended program of Reid, in which the electronic energy levels for the 5f26d configuration
were calculated by simultaneous diagonalization of the various Hamiltonians in equation (1),
and the relevant formulae have been given in detail in section 2, based on Cowan’s book [11].
LiYF4 crystallizes in the tetragonal space group I41/a, with Z = 4 [13]. In this host, the U3+

ions occupy the S4 site of Y3+, although the slightly distorted dodecahedral coordination is
well-approximated by D2d [10], so that then the crystal field parameters required to fit the 5f3

energy levels are all real.
The parameters for Coulomb interaction between the 5f electrons, spin–orbit interaction

and other small atomic interactions are needed for the calculations, as well as the crystal–
field interaction parameters for the 5f electrons. The values for these parameters have been
determined from fits of the experimentally observed positions of the 5f3 energy levels of U3+

in LiYF4 [10]. In addition, the energy-level calculations of 5f26d levels require crystal–field
and spin–orbit parameters for the 6d electron of U3+ in LiYF4, which are not available in the
literature. Finally, the Coulomb interactions between the 5f electrons and the 6d electron have
to be included. These f–d interaction parameters can be obtained from ab initio calculations
using standard atomic computer programs [11]. In addition to the splitting into many energy
levels due to interactions within the 5f26d configuration, the position of the energy levels is
determined also by the difference �E(fd) between the average energies of the 5f26d and 5f3

configurations, since the energy levels of the 5f3 and 5f26d configurations are simultaneously
calculated in the model. This energy difference comprises several sources, including kinetic
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energy, Coulomb and (isotropic) crystal–field effects. The influence of �E (fd) is to shift all
the 5f26d energy levels by the same amount relative to the ground state, and �E(fd) is adjusted
to obtain the best agreement between calculation and experiment.

In our calculations on the 5f26d states of U3+ in LiYF4, the atomic and crystal–field
parameters of the 5f3 ground configuration [10] were used. This is only an approximation
since there is not enough information to test the effect of varying these parameters from the
5f3 values. The crystal–field parameters of the 6d electron were approximated to be the
same as those of the 5d electron of Ce3+ in LiYF4. The use of this approximation may be
justified by the fact that the crystal–field splitting of the 6d electron may be slightly smaller
than the lower energy limit of the crystal–field splitting of the 5d electron [14] and, second,
the good agreement of our calculation with experiment. The atomic parameters calculated
from the standard atomic computer programs [11] were used for the f–d Coulomb interaction
and the spin–orbit interaction of the 6d electron. Due to the delocalizations of the 5f and 6d
electrons over the ligands in a crystalline host, the f–d Coulomb interaction parameters can
be expected to be reduced from the free ion values in a similar manner to the reductions of
f–d Coulomb interaction parameters of lanthanide ions (the nephelauxetic effect) [3, 4]. Thus,
our calculations were performed with the Fk(fd) and Gk(fd) as adjustable parameters, and
the best agreement was obtained between calculation and experiment when the f–d interaction
parameters were reduced to ∼33% of the calculated free ion values. The amount of reduction
(∼67%) is much larger than the value 26% used for the isoelectronic Nd3+ lanthanide ion in
the same host [3], at least partly because the 5f and 6d orbitals have larger extensions with
respect to 4f and 5d orbitals. The energy parameters used in the calculation of the 5f26d energy
levels are collected in table 3.

3.2. Simulation of the 5 f 3 → 5 f 26d spectrum

The electronic ground state of the 5f3 configuration of U3+ in LiYF4 transforms as the irrep
�6 of the molecular point group D2d [10]. The transitions from 5f3 to 5f26d are all electric
dipole allowed and the electric dipole matrix elements for the transitions can be calculated
using the formulae displayed in section 2.2 in the case of N = 3. Because the 6d orbital
is more extended than the 5f orbitals, there is a displacement of the equilibrium positions
of the ligands in the excited states and most of the intensity is located in a broad vibronic
band [15]. In the simulation of the unpolarized absorption spectrum of U3+ in LiYF4, we made
the approximation that the oscillator strengths of the vibronic bands are proportional to the
electric dipole transition line strength S between the ground 5f3 states |f3�′γ ′〉 and the final
5f26d states |f2d�γ 〉, multiplied by the transition wavenumber σ of the zero-phonon line. The
line strength S is the sum of its components as

S =
∑

q

Sq (q = 1, 0,−1) (29)

where

Sq =
∑
γ ′γ

|〈f3�′γ ′|D1
q |f2d�γ 〉|2 (30)

and the explicit expression for the matrix element has been given in section 2.2. There are many
vibrational modes for LiYF4 crystals [16] and the spectra contain superpositions of several
vibronic progressions [15], giving rather featureless vibronic bands. Therefore, we assume
that superposition of several side bands corresponding to progressions in different vibrational
modes gives rise to a Gaussian shape of the vibronic band. The energy-level calculations
are performed to generate the zero-phonon line positions. To reproduce the experimentally
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Table 3. Energy parameters for the 5f26d configuration of U3+ in LiYF4. Parameters for the
splitting of the 5f2 core (such as the parameters for Coulomb interaction, spin–orbit interaction and
crystal–field splitting) are obtained from the literature [10]. The spin–orbit interaction parameter
of the 6d electron is calculated using Cowan’s code [11], and the parameters for the crystal–field
splitting of the 6d state are derived from those of the 5d states of Ce3+ in LiYF4 [3]. Refer to the
text for further details.

Parameters (cm−1)

F2(ff) 35 05510

F4(ff) 29 33410

F6(ff) 19 18610

ζf 164210

α(f) 2310

β(f) −85210

γ (f) 107010

M0(f) a 0.710

P2(f) b 121610

B2
0 (f) 42010

B4
0 (f) −245810

B4
4 (f) −284510

B6
0 (f) 9310

B6
4 (f) −328010

ζd 271411

B2
0 (d) 46733

B4
0 (d) −18 6493

B4
4 (d) −23 8713

�E (fd) 24 383
F2(fd) 11 516
F4(fd) 6365
G1(fd) 6757
G3(fd) 5177
G5(fd) 3939

a M2 and M4 parameters were included with the ratios M2/M0 = 0.56 and M4/M0 = 0.31.
b P4 and P6 parameters were included with the ratios P4/P2 = 0.5 and P6/P2 = 0.1.

observed spectrum, Gaussian shaped bands are superimposed on the zero-phonon lines, with
the maximum displacement from the zero-phonon line (by an increase) of 400 cm−1, with
width (full width at half-maximum (FWHM)) 1200 cm−1, and with the oscillator strength
proportional to Sσ calculated for the zero-phonon line. The above values of displacement and
width are estimated from the excitation spectrum of Ce3+ in LiYF4 [17], of which the width
of all the 4f → 5d bands is approximately 1200 cm−1, and the peak of the first band is offset
from the zero-phonon line by 400 cm−1.

The simulated spectrum of U3+ in LiYF4 is shown as the dashed curve in figure 1,
whereas the solid curve is the experimental spectrum from [9]. The calculated positions
and relative oscillator strengths of zero-phonon lines are indicated by vertical lines. The
agreement between the simulated spectrum and the experimentally observed spectrum is quite
good. The splitting and intensity pattern of the low-energy region (400–600 nm) is explained
well by the calculation. The lowest peak in the experimentally observed spectrum is not
reproduced by the simulated spectrum, but when the width of the Gaussian shaped band is
reduced to 400 cm−1, this peak shows clearly. For the high-energy region (200–400 nm) an
exact comparison cannot be made between calculation and experiment, since the fine structure
is not present in the observed spectrum. This is attributed to peak overlap of the vibrational
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Figure 1. Experimental (solid curve from [9]) and simulated 5f3 → 5f26d absorption spectrum
of U3+ in LiYF4. The vertical lines are the predicted positions of zero-phonon lines, with heights
proportional to predicted intensities, and the dashed curve is a simulated spectrum of the vibronic
bands.

progressions based upon numerous zero-phonon lines, so that broad unresolved bands result.
However, the calculated results do appear to be consistent with experiment, with a minimum
intensity at around 300 nm.

4. Conclusions

Energy-level calculations for the 5f26d configuration of U3+ in LiYF4 have been performed
using the extended model developed by Reid [17] for the calculation of the 4f N−15d energy
levels, and the 5f3 → 5f26d absorption spectrum has been simulated. For the f N−1d
configuration, the matrix elements of the Hamiltonians HC, HSO and HCF between f N−1d
basis states, and the f N → f N−1d electric dipole transition matrix elements have been
expressed in detail, using the irreducible tensor operator formalism described in [11]. The
direct and exchange coefficients of f–d Coulomb interaction within the f2d configuration have
also been calculated and tabulated. The calculated absorption spectrum is consistent with
the experimentally observed 10 K spectrum [9]. The energy parameters for the f–d Coulomb
interactions within the 5f26d configuration of U3+ in LiYF4 are reduced to ∼33% of the free-
ion values calculated by the standard atomic programs [11]. The amount of reduction (∼67%)

is much larger than the value of 26% for the isoelectronic Nd3+ lanthanide ion in the same
host [3].
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